Abstract
To investigate the biomechanical effect of C1 lateral mass-C2 pedicle screw-rod (C1LM-C2PS) fixation with and without transverse connectors (TC) in an atlantoaxial instability (AAI) model. Ten freshly frozen cadaveric specimens were tested using an industrial robot under the following conditions: intact model, AAI model, C1-C2 model, C1-C2 with one TC model, and C1-C2 with two TCs model. Three types of motion, flexion-extension (FE), lateral bending (LB), and axial rotation (AR), were applied (1.5 Nm) to the specimens. The range of motion (ROM) and neutral zone (NZ) between C1 and C2 in all directions were measured. Compared with those of the intact and AAI models, the C1-C2 ROM and NZ of all instrumented groups were decreased significantly in each direction of loading motion (P < 0.05). The mean FE ROM in the no TC, 1 TC, and 2 TC groups was 2.12° ± 0.41°, 2.29° ± 0.42°, and 2.04° ± 0.69°, respectively (P= 0.840, 0.981, 0.628, respectively); the mean LB ROM in the 3 intervention groups was 1.26° ± 0.67°, 1.02° ±0.51° and 1.03° ± 0.57°, respectively (P= 0.489, 0.501, 1.000, respectively). During AR, the ROM and NZ of the no TC group (3.19° ± 0.89° and 1.51° ± 0.42°) were significantly reduced by more than 60% compared with those in the 1 (0.98° ± 0.28° and 0.40° ± 0.11°) and 2 TC groups (1.17° ± 1.69° and 0.42° ± 0.61°) (P < 0.001). Two TCs were equivalent for all loading motions to 1 TC (P > 0.05). Adding TCs to C1LM-C2PS can effectively decrease the axial rotation ROM and enhance the stability of C1-C2 segment. Therefore, it is necessary to use TC-strengthened C1 lateral mass -C2 pedicle screw-rod fixation in patients with instability of C1-C2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.