Abstract

BackgroundRecently, several members of the transforming growth factor-beta (TGF-beta) superfamily have been shown to be essential for regulating the growth and differentiation of ovarian follicles and thus fertility.MethodsOvaries of neonatal and adult sheep were examined for expression of the TGF-betas 1–3 and their receptors (RI and RII) by in situ hybridization using ovine cDNAs. The effects of TGF-beta 1 and 2 on proliferation and differentiation of ovine granulosa cells in vitro were also studied.ResultsThe expression patterns of TGF-beta 1 and 2 were similar in that both mRNAs were first observed in thecal cells of type 3 (small pre-antral) follicles. Expression of both mRNAs continued to be observed in the theca of larger follicles and was also present in cells within the stroma and associated with the vascular system of the ovary. There was no evidence for expression in granulosa cells or oocytes. Expression of TGF-beta 3 mRNA was limited to cells associated with the vascular system within the ovary. TGFbetaRI mRNA was observed in oocytes from the type 1 (primordial) to type 5 (antral) stages of follicular growth and granulosa and thecal cells expressed this mRNA at the type 3 (small pre-antral) and subsequent stages of development. The TGFbetaRI signal was also observed in the ovarian stroma and vascular cells. In ovarian follicles, mRNA encoding TGFbetaRII was restricted to thecal cells of type 3 (small pre-antral) and larger follicles. In addition, expression was also observed in some cells of the surface epithelium and in some stromal cells. In granulosa cells cultured for 6 days, both TGF-beta 1 and 2 decreased, in a dose dependent manner, both the amount of DNA and concentration of progesterone.ConclusionIn summary, mRNA encoding both TGF-beta 1 and 2 were synthesized by ovarian theca, stroma and cells of the vascular system whereas TGF-beta 3 mRNA was synthesized by vascular cells. Luteinizing granulosa cells also responded to both TGF-beta 1 and beta 2 in vitro. These findings in sheep are consistent with TGF-beta potentially being an important autocrine regulator of thecal cell function and possibly a paracrine regulator of ovarian cell function at various development stages.

Highlights

  • Several members of the transforming growth factor-beta (TGF-beta) superfamily have been shown to be essential for regulating the growth and differentiation of ovarian follicles and fertility

  • In situ hybridization TGF-β1 The mRNA for TGF-β1 was not observed in granulosa cells or oocytes of any follicles (Figure 1a,1b, table 2)

  • TGF-β2 The pattern of expression of mRNA encoding TGF-β2 was similar to that observed for TGF-β1, with hybridization limited to the thecal cells of type 3 and larger follicles (Figure 1c,1d, table 2)

Read more

Summary

Introduction

Several members of the transforming growth factor-beta (TGF-beta) superfamily have been shown to be essential for regulating the growth and differentiation of ovarian follicles and fertility. TGF-βs are potent stimulators of granulosa cell proliferation [14,15,16] whereas in other species, such as cattle and pigs, these growth factors have only a mild stimulatory or even inhibitory effect [17,18,19,20]. TGF-βs stimulate progesterone synthesis from rodent granulosa cells [21,22,23] where inhibitory effects are observed in granulosa cells collected from sheep, cattle and pigs [17,24,25,26]. Exceptional ovulation rates and sterility have been observed in lines of sheep with mutations in two members of the TGF-β superfamily, namely growth differentiation factor 9 or bone morphogenetic protein 15 or one of their receptors, activin like kinase-6 [6,27]. The objectives of this study in sheep were to localize the ovarian cellular types expressing mRNA encoding TGF-β1, TGF-β2, TGF-β3, TGFβRI and TGFβRII and to determine the effects of TGF-β1 and TGF-β2 on granulosa cell proliferation/survival and progesterone production in vitro

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call