Abstract

Echolocating bats produce ultrasonic vocal signals and utilize the returning echoes to detect, localize and track prey, and also to avoid obstacles. The pinna and tragus, two major components of the bats external ears, play important roles in filtering returning echoes. The tragus is generally believed to play a role in vertical sound localization. The purpose of this study is to further examine how manipulation of the tragus affects a free-flying bat’s prey capture and obstacle avoidance behavior. The first part of this study involved a prey capture experiment, and the bat was trained to catch the tethered mealworms in a large room. The second experiment involved obstacle avoidance, and the bat’s task was to fly through the largest opening from a horizontal wire array without touching the wires. In both experiments, the bat performed the tasks under three different conditions: with intact tragus, tragus-deflection and recovery from tragus-deflection. Significantly lower performance was observed in both experiments when tragi were glued down. However, the bat adjusted quickly and returned to baseline performance a few days after the manipulation. The results suggest that tragus-deflection does have effects on both the prey capture and obstacle avoidance behavior. [Work supported by NSF.]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.