Abstract

BackgroundSubchondral insufficiency fracture of the femoral head generally occurs without evidence of trauma or with a history of minor trauma. Insufficient bone quality is considered one cause; however, the detailed mechanism of fracture development at the subchondral area (SA) is not understood. The aim of this study was to clarify the directions of force that cause subchondral fracture using finite element model analysis. MethodsTwo types of finite element models were generated from the CT data of femurs obtained from three individuals without osteoporosis (normal models) and another three with osteoporosis (osteoporosis models). Three directions of force, including compressive, shearing, and torsional, were applied to the femoral head. The distribution of von Mises stress (Mises stress) was evaluated at the SA, principal compressive trabeculae (PC), and principal tensile trabeculae. ResultsUnder compressive force, the mean Mises stress value was greatest at the PC in both the normal and osteoporosis models. Under shearing force, the mean Mises stress value tended to be greatest at the SA in the normal model and at the PC in the osteoporosis model. Under torsional force, the mean Mises stress value was greatest at the SA in both types of models. ConclusionsThe torsional force showed the greatest Mises stress at the SA in both the normal and osteoporosis models, suggesting the importance of torsion as a possible force responsible for subchondral insufficiency fracture development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call