Abstract

In this paper, the effects of top predator interference on the dynamics of a food chain model involving an intermediate and a top predator are considered. It is assumed that the interaction between the prey and intermediate predator follows the Volterra scheme, while that between the top predator and its favorite food depends on Beddington–DeAngelis type of functional response. The boundedness of the system, existence of an attracting set, local and global stability of non-negative equilibrium points are established. Number of the bifurcation and Lyapunov exponent bifurcation diagrams is established. It is observed that, the model has different types of attracting sets including chaos. Moreover, increasing the top predator interference stabilizes the system, while increasing the normalization of the residual reduction in the top predator population destabilizes the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.