Abstract

To form tissues with uniform cell distribution and extracellular matrix arrangement is of great relevance to obtain the desirable function and maintain structural integrity. Scaffold configuration is believed to play a critical role in regulating cell spatial distribution and consequently tissue formation. In this study, three types of poly(ethyleneglycol-terephthalate)–poly (butylenes terephthalate) (PEGT/PBT) scaffolds [compression molded scaffold (CM), compression molded scaffold after chloroform/isopropanol reticulation (CMR), 3D rapid prototyped fibrous scaffold (RP)] with various configurations were used to support the tissue formation of adipose stromal cells for up to 21 days. Characterization of the scaffolds with μCT revealed that RP scaffolds were composed of repeating structural units with well controlled interconnected pores, in contrast to the irregular pore morphology in CM or CMR. Cell seeding efficacy onto various scaffolds was comparable (from 67 ± 4% to 82 ± 3%), while only RP scaffold led to even cell attachment onto the inner fibers of the scaffolds. Continuous cell proliferation and deposition of new collagen and glycosaminoglycans (GAG) were measured for all three scaffolds, while with a significant amount measured in RP at 21 days. By 21 days, complete uniform tissue formation was only achieved in RP scaffolds under a dynamic cell culture in spinner flasks. The present study successfully demonstrates the feasibility of controlling uniform tissue formation at a microscale by manipulating the structural configuration of the scaffold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.