Abstract

AbstractWe present a novel method that identifies the contributions of thermodynamic phase shifts and processes governing supercooled liquid and ice clouds to cloud optical depth variations with temperature using Moderate Resolution Imaging Spectroradiometer observations. Our findings suggest that thermodynamic phase shifts outweigh the net influence of processes governing supercooled liquid and ice clouds in causing increases in midlatitudinal cold cloud optical depth with temperature. Cloud regime analysis suggests that dynamical conditions appear to have little influence on the contribution of thermodynamic phase shifts to cloud optical depth variations with temperature. Thermodynamic phase shifts also contribute more to increases in cloud optical depth during colder seasons due to the enhanced optical thickness contrast between liquid and ice clouds. The results of this study highlight the importance of thermodynamic phase shifts in explaining cold cloud optical depth increases with temperature in the current climate and may elucidate their role in the cloud optical depth feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.