Abstract

Coastal erosion in the Arctic has numerous internal and external environmental drivers. Internal drivers include sediment composition, permafrost properties and exposure which contribute to its spatial variability, while changing hydrometeorological conditions act as external drivers and determine the temporal evolution of shoreline retreat. To reveal the relative role of these factors, we investigated patterns of coastal dynamics in an enclosed bay in the southwestern Kara Sea, Russia, namely the Gulf of Kruzenstern, which is protected from open-sea waves by the Sharapovy Koshki Islands. Using multitemporal satellite imagery, we calculated decadal-scale retreat rates for erosional segments of the coastal plain from 1964 to 2019. In the field, we studied and described Quaternary sediments and massive ground-ice beds outcropping in the coastal bluffs. Using data from regional hydrometeorological stations and climate reanalysis (ERA), we estimated changes in the air thawing index, sea ice-free period duration, wind-wave energy and total hydrometeorological stress for the Gulf of Kruzenstern, and compared it to Kharasavey and Marre-Sale open-sea segments north and south of the gulf to understand how the hydrometeorological forcing changes in an enclosed bay. The calculated average shoreline retreat rates along the Gulf in 1964–2010 were 0.5 ± 0.2 m yr−1; the highest erosion of up to 1.7 ± 0.2 m yr−1 was typical for segments containing outcrops of massive ground-ice beds and facing to the northwest. These retreat rates, driven by intensive thermal denudation, are comparable to long-term rates measured along open-sea sites known from literature. As a result of recent air temperature and sea ice-free period increases, average erosion rates rose to 0.9 ± 0.7 m yr−1 in 2010–2019, with extremes of up to 2.4 ± 0.7 m yr−1. The increased mean decadal-scale erosion rates were also associated with higher spatial variability in erosion patterns. Analysis of the air thawing index, wave energy potential and their total effect showed that inside the Gulf of Kruzenstern, 85% of coastal erosion is attributable to thermal denudation associated with the air thawing index, if we suppose that at open-sea locations, the input of wave energy and air thawing index is equal. Our findings highlight the importance of permafrost degradation and thermal denudation on increases in ice-rich permafrost bluff erosion in the Arctic.

Highlights

  • Coasts in permafrost regions are extremely sensitive to environmental changes; coastal erosion is among the major destructive geomorphic processes in the Arctic, with circumArctic average shoreline retreat rate reaching 0.5 m yr−1 (Lantuit et al, 2013)

  • While coastal erosion in low latitudes mainly depends on wind and wave energy and sediment composition of the shores (e.g., Luijendijk et al, 2018), as well as sea level rise (Meyssignac and Cazenave, 2012) and human impacts, drivers of the Arctic coastal dynamics are unique with respect to the added influence of permafrost and ground-ice and seaice dynamics

  • Years), give evidence that the upper brown silts formed in the Holocene; they are cover sediments accumulated in terrestrial conditions, derived from the presence of single freshwater diatoms and cryogenic deformations by multiple thawing and re-freezing events

Read more

Summary

Introduction

Coasts in permafrost regions are extremely sensitive to environmental changes; coastal erosion is among the major destructive geomorphic processes in the Arctic, with circumArctic average shoreline retreat rate reaching 0.5 m yr−1 (Lantuit et al, 2013). While coastal erosion in low latitudes mainly depends on wind and wave energy and sediment composition of the shores (e.g., Luijendijk et al, 2018), as well as sea level rise (Meyssignac and Cazenave, 2012) and human impacts, drivers of the Arctic coastal dynamics are unique with respect to the added influence of permafrost and ground-ice (internal drivers) and seaice dynamics (external drivers) Together, they comprehend such highly variable processes as thermal abrasion, or thermal and mechanical destruction of permafrost coasts by waves, and thermal denudation, or thawing of the frozen ground at the bluffs and slumping of material due to gravity (Aré, 1988; Razumov, 2001; Leontiev, 2003). Such complex patterns make correlations of hydrometeorological parameters with temporal evolution of coastal erosion a challenging task (Jones et al, 2018; Shabanova et al, 2018)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.