Abstract

The catalytic properties for the hydrogenolysis of ethane, propane and cyclopropane of a series of highly dispersed RuNaY catalysts have been investigated. These catalysts have activities and selectivities for ethane and propane hydrogenolysis similar to other supported ruthenium catalysts. However, the activity of the RuNaY for cyclopropane hydrogenolysis is much higher than that of Ru on conventional oxide supports, while the selectivities remain in a range expected for well-dispersed ruthenium. The increase in activity for the RuNaY catalysts is due mainly to the presence of highly dispersed Ru particles made possible by the zeolite support. A destabilization of the cyclopropane ring by the electrostatic field of the zeolite, however, does not seem to contribute significantly to the observed rate increase. It appears that the ring opening of cyclopropane and the hydrogenolysis of cyclopropane to ethane and methane have a common intermediate, the formation of which is rate determining for both reactions. The discovery that on Ru the ring opening of cyclopropane is structure sensitive is surprising since this reaction is generally considered as a classic example for structure insensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.