Abstract

This study investigates the subcellular pharmacokinetics of drug efflux in cancer cells and explores the role of the multivesicular body (MVB) in facilitating efflux of doxorubicin, a widely used DNA-targeting anticancer agent, from the nucleus. Human erythroleukemic K562 cells were pulsed with doxorubicin and then chased in drug-free media to allow for efflux. Microscopy and biochemical techniques were used to visualize the subcellular localization of the drug and measure drug content and distribution during the efflux period. To explore the role of the MVB in doxorubicin efflux, K562 cells were transfected with dominant negative mutant forms of VPS4a-GFP chimeras. Although the intracellular concentration of drug exceeds the extracellular concentration, nuclear efflux of doxorubicin occurs in living cells at a faster rate than doxorubicin unbinding from isolated nuclei into drug-free buffer. In cells expressing dominant negative VPS4a, doxorubicin accumulates in VPS4a-positive vesicles and drug sequestration is inhibited, directly implicating the MVB pathway in the egress route of doxorubicin in this cell type. Cellular membranes are a component of the doxorubicin efflux mechanism in K562 cells. Dominant-negative GFP chimeric mutants can be used to elucidate the role of specific membrane trafficking pathways in subcellular drug transport routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.