Abstract

The function of the vibration signal of the honey bee (Apis mellifera) during house hunting was investigated by removing vibrating bees from swarms and examining the effects on waggle dancing for nest sites, liftoff preparations and swarm movement. We compared house hunting among three swarm types: (1) test swarms (from which vibrating bees were removed), (2) manipulated control (MC) swarms (from which randomly selected workers and some waggle dancers were removed), and (3) unmanipulated control (UC) swarms (from which no bees were removed). The removal of vibrating bees had pronounced effects on liftoff preparations and swarm movement. Compared to the MC and UC swarms, the test swarms had significantly greater liftoff-preparation periods, were more likely to abort liftoff attempts, and in some cases were unable to move to the chosen site after the swarm became airborne. However, the three swarm types did not differ in overall levels of waggle dance activity, the time required to achieve consensus for a nest site, the rate at which new waggle dancers were recruited for the chosen site, or the ability to maintain levels of worker piping necessary to prepare for flight. The removal of vibrating bees may therefore have altered liftoff behavior because of a direct effect on vibration signal activity. A primary function of the signal during house hunting may be to generate a level of activity in workers that enhances and coordinates responses to other signals that stimulate departure and movement to a new location.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call