Abstract

Background and Objectives:The vestibuloautonomic reflex controls respiration and blood pressure during locomotion. The purpose of this study was to investigate the role of the peripheral vestibular receptor in the control of blood pressure in sinoaortic denervated (SAD) rats. Materials and Methods:The baroreceptor reflex was removed by SAD in labyrinthectomized rats. The expression of c-Fos protein in the vestibular nuclear complex, and other nuclei related to control of blood pressure, was measured following the induction of acute hypotension using sodium nitroprusside (SNP). Results:The SNP induced acute hypotension, in intact labyrinthine rats, increased the expression of c-Fos protein in the supraoptic nucleus, paraventricular nucleus, rostral ventrolateral medulla, solitary nucleus, and vestibular nuclear complex. The expression of c-Fos protein, following the SNP induced acute hypotension in the SAD rats, increased the expression of c-Fos protein in the paraventricular nucleus, rostral ventrolateral medulla, and medial and inferior vestibular nuclei. The acute hypotension induced by SNP in a unilateral labyrinthectomy, with SAD, increased the expression of c-Fos protein in the contralesional vestibular nuclear complex, but decreased its expression in the ipsilesional vestibular nuclear complex. The acute hypotension induced by SNP in a bilateral labyrinthectomy, with SAD, showed only slight expression of c-Fos protein in the bilateral vestibular nuclear complex. Conclusion:These results suggest that the acute hypotension induced by SNP activates the vestibular nuclear neurons by decreasing the blood flow in the peripheral vestibular receptors, and that these in turn modulate blood pressure through activation of the catecholaminergic nervous system and neuroendocrine reflex. (Korean Circulation J 2003;33 (6):513-522)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.