Abstract

The Sun is by far the most important driving force of the climate system. However, only little is known how variable this force is acting on different time scales ranging from minutes to millennia and how the climate system reacts to changes in this forcing. Changes of the global insolation can be related to the nuclear fusion in the core of the Sun, the energy transport through the radiative zone and the convection zone, the emission of radiation from the photosphere, and the distance between Sun and Earth. Satellite based measurements over two decades show a clear correlation between the solar irradiance and the 11-year sunspot cycle. The irradiance amplitude is about 0.1%. This is too small to affect significantly the climate. However, there are indications that, on longer time scales, solar variability coluld be much larger. The analysis of cosmogenic nuclides stored in natural archives provides a means to extend our knowledge of solar variability over much longer time periods. The response of the climate system to solar forcing depends not only on the amount of radiation, but also on its spectral composition (e.g. UV contribution), seasonal distribution over the globe, and feedback mechanisms connected with clouds, water vapour, ice cover, atmospheric and oceanic transport and other terrestrial processes. It is therefore difficult to establish a quantitative relationship between observed climate changes in the past and reconstructed solar variability. However, there is growing evidence that periods of low solar activity (so called minima) coincide with advances of glaciers, changes in lake levels, and sudden changes of climatic conditions. These findings point to an active role of the Sun in past climate changes beside other geophysical factors, internal variability of the climate system, and greenhouse gases. In fact a non-linear regression model to separate natural and anthropogenic forcing since 1850 is consistent with a solar contribution of about 40% to the global warming during the last 140 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call