Abstract

AbstractThe stratosphere has been identified as an important source of predictability for a range of processes on subseasonal to seasonal (S2S) time scales. Knowledge about S2S predictability within the stratosphere is however still limited. This study evaluates to what extent predictability in the extratropical stratosphere exists in hindcasts of operational prediction systems in the S2S database. The stratosphere is found to exhibit extended predictability as compared to the troposphere. Prediction systems with higher stratospheric skill tend to also exhibit higher skill in the troposphere. The analysis also includes an assessment of the predictability for stratospheric events, including early and midwinter sudden stratospheric warming events, strong vortex events, and extreme heat flux events for the Northern Hemisphere and final warming events for both hemispheres. Strong vortex events and final warming events exhibit higher levels of predictability as compared to sudden stratospheric warming events. In general, skill is limited to the deterministic range of 1 to 2 weeks. High‐top prediction systems overall exhibit higher stratospheric prediction skill as compared to their low‐top counterparts, pointing to the important role of stratospheric representation in S2S prediction models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.