Abstract
BackgroundPatients sustaining major trauma are predisposed to the development of organ dysfunction. We have shown that oxidant stress generated by hemorrhagic shock/resuscitation (S/R) in rodents increases lipopolysaccharide (LPS)-induced lung injury and translocation of nuclear factor kappa B (NF-κB) in alveolar macrophages (AMs). In addition, using a cellular model, we have shown that priming with oxidants reprograms LPS signaling through an Src-dependent pathway. In the present studies, we hypothesize that oxidant priming by S/R in vivo involves Src family kinases. MethodsRats were bled to a mean arterial pressure of 40 mmHg and maintained for 1 hour, then resuscitated with shed blood and equal volume of Ringer's lactate. In some studies, animals received the antioxidant NAC (0.5 g/kg) or a Src family inhibitor, PP2 (0.1 or 0.2 mg/kg), before resuscitation. LPS was given intratracheally (30 mg/kg) for 4 hours. AMs were lavaged, and total cell counts were determined. AMs were also obtained at end resuscitation and exposed to LPS (0.1 μg/mL) from 0 to 60 minutes. Activation of Hck, an Src family kinase, was analyzed by Western blot using a phosphospecific antibody. Nuclear extracts were obtained to examine NF-κB translocation. ResultsS/R caused a rise in Src family activity compared with sham animals as shown by the phosphorylation of Hck. This was prevented by treating the animals during resuscitation with NAC. The LPS-induced NF-κB translocation in AMs after shock/resuscitation was 3-fold higher than in sham AMs treated with LPS. This augmented translocation was prevented by pretreating the animals with PP2 before resuscitation. In a parallel fashion, PP2 pretreatment reduced the absolute lung neutrophil sequestration. ConclusionOxidant stress generated during S/R in vivo causes Src family kinase activation in AMs. Inhibition of Src activation by PP2 attenuates AM priming for increased LPS responsiveness after hemorrhagic shock and causes a modest reduction in lung injury. Inhibition of the Src family kinases may be a novel approach for the treatment of lung injury after trauma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.