Abstract

The role of a shock generator in the fuel distribution of a scramjet engine is highly significant. In this article, the usage of the erected 3-lobe nozzle in the existence of a shock generator for fuel injection inside a supersonic combustion chamber is fully studied. A three-dimensional model of the extruded 3-lobe nozzle with two altitudes of 4 mm and 2 mm is produced to disclose the importance of the produced vortex upstream/downstream by the usage of the extruded injector. Comprehensive computational analysis is done to investigate the mixing efficiency and fuel diffusion of the proposed jet configuration. Impacts of the coaxial inward air jet on the hydrogen dispersion of the annual extruded 3-lobe injector are also revealed in the present research. The results of the flow structure indicate that the produced vortex upstream of the erected nozzle improves the fuel dispersion behind the hydrogen jet. Our findings show that the effects of injector height are more considerable than the use of an inner air jet for advance of the fuel mixing within the combustor of a scramjet engine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call