Abstract

The cationic complex [Ni(H)(OH)]+ was previously found to activate dioxygen and methane in gas phase under single collision conditions. These remarkable reactivities were thought to originate from a non-classical electronic structure, where the Ni-center adopts a Ni(II), instead of the classically expected Ni(III) oxidation state by formally accepting an electron from the hydroxo ligand, which formally becomes a hydroxyl radical in the process. Such radicaloid oxygen moieties are envisioned to easily react with otherwise inert substrates, mimicking familiar reactivities of free radicals. In this study, the reductive activation of dioxygen by [Ni(H)(OH)]+ to afford the hydroperoxo species was investigated using coupled cluster, multireference ab initio and density functional theory calculations. Orbital and wave function analyses indicate that O2 binding tranforms the aforementioned non-classical electronic structure to a classical Ni(III)-hydroxyl system, before O2 reduction takes place. Remarkably, we found no evidence for a direct involvement of the radicaloid hydroxyl in the reaction with O2 , as is often assumed. The function of the redox non-innocent character of the activator complex is to protect the reactive electronic structure until the complex engages O2 , upon which a dramatic electronic reorganization releases internal energy and drives the chemical reaction to completion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.