Abstract

The organization of metallic nanoparticles into assembled films is a complex process. The type of nanoparticle stabilizing ligand and the method for creating an organized layer can profoundly affect the optical properties of the resulting nanoparticle assembly. Investigations of the ligand structure and nanoparticle interactions can provide a greater understanding of the design of the assembly process and the quality of the resulting materials. One of the functionalization methods in the preparation of specific gold nanorods is the utilization of thiol-terminated poly(ethylene glycol). This generates gold nanorods capable of forming stable monolayers at the air-water interface upon dispersion in a suitable organic solvent. Herein, we show that depending on the molecular weight of the poly(ethylene glycol), the structures obtained at the air-water and air-solid interfaces differ in the arrangement. The studied structures were characterized by using spectroscopic and microscopic techniques, and the structural type was correlated with the polymer type. Insoluble and stable Langmuir monolayers composed of higher-molecular-weight gold nanorods with poly(ethylene glycol) were formed only in the presence of an additional stabilizer that prevented the formation of gold nanorods in aqueous solutions. At the air-solid interface, conformational changes in poly(ethylene glycol) induced the aggregation of gold nanorods, which became closely packed under the influence of surface pressure. The presented results suggested that the arrangement of two-dimensional layers of gold nanorods could be tailored using poly(ethylene glycol) of various molecular weights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.