Abstract

The biologically significant phenomenon that the fetus can survive immune attacks from the mother has been demonstrated in mammals. The survival mechanism depends on the fetus and placenta actively defending themselves against attacks by maternal T cells, achieved through the localized depletion of the amino acid L-tryptophan by an enzyme called indoleamine 2,3-dioxygenase. These findings were entirely unexpected and pose important questions regarding diseases related to human pregnancy and their prevention during human pregnancy. Specifically, the role of this mechanism, as discovered in mice, in humans remains unknown, as does the extent to which impaired activation of this process contributes to major clinical diseases in humans. We have, thus, elucidated several key aspects of this enzyme expressed in the human placenta both in normal and abnormal human pregnancy. The questions addressed in this brief review are as follows: (1) localization and characteristics of human placental indoleamine 2,3-dioxygenas; (2) overall tryptophan catabolism in human pregnancy and a comparison of indoleamine 2,3-dioxygenase expression levels between normal and pre-eclamptic pregnancy; (3) controlling trophoblast invasion by indoleamine 2,3-dioxygenase and its relation to the pathogenesis of placenta accrete spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call