Abstract

In September 1988, the United States Nuclear Regulatory Commission issued a revised emergency core cooling system rule for light water reactors that allows, as an option, the use of best estimate plus uncertainty methods in safety analysis. To support the 1988 licensing revision, the United States Nuclear Regulatory Commission and its contractors developed the code scaling, applicability and uncertainty evaluation methodology to demonstrate the feasibility of the best estimate plus uncertainty approach. The phenomena identification and ranking table (PIRT) process, Step 3 in the code scaling, applicability and uncertainty methodology, was originally formulated to support the best estimate plus uncertainty licensing option. Through further development and application, the PIRT process has shown additional utility as a robust means to establish safety analysis computer code phenomenological requirements in their order of importance to such analyses. The generic PIRT process, including typical and common illustrations from prior applications that promoted further development of the process, are described. Analysis of the results of the prior applications is also described. The analysis results provide information that can help guide future applications of the process in a graded approach based on phenomena relative importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.