Abstract

Observations of flow velocity profiles over frog mucociliated palate are used to estimate viscosity, shear rate and shear stress in the periciliary flow field. The ability of cilia to generate significant shear stress at long distances and their utility as rhoeometers are examined. It is proposed that the depth of significant ciliary shear penetration into the periciliary fluid is sufficient to move mucus masses well beyond the ciliary tips, obviating the need for tip penetration where anchoring phenomena are sufficiently reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.