Abstract

BackgroundTranscript levels for cytokines and the viral restriction factor interferon-induced transmembrane protein are markedly higher in the prefrontal cortex in schizophrenia. These gene products are regulated by the nuclear factor-κB (NF-κB) transcriptional complex. NF-κB activity, which requires the formation of NF-κB family member heterodimers, is regulated by activation receptors, kinases, and inhibitors. Whether any of these factors are altered in schizophrenia is not known. It is also unclear whether NF-κB-related disturbances reflect ongoing cortical immune activation or a long-lasting response to a prenatal immune-related insult. MethodsTranscript levels for NF-κB pathway markers were assessed using quantitative polymerase chain reaction in the prefrontal cortex from 1) 62 matched pairs of schizophrenia and unaffected comparison subjects, 2) antipsychotic-exposed monkeys, and 3) adult mice exposed prenatally to maternal immune activation or in adulthood to the immune stimulant polyinosinic-polycytidylic acid. ResultsIn schizophrenia subjects, but not antipsychotic-exposed monkeys, we found higher messenger RNA levels for 1) most NF-κB family members, 2) all NF-κB activation receptors, 3) several kinases, and 4) one inhibitor (IκBα) whose transcript level is itself regulated by NF-κB activity. A similar pattern of elevated NF-κB-related messenger RNA levels was seen in adult mice that received daily polyinosinic-polycytidylic acid injections, but not in adult mice subjected to maternal immune activation in utero. ConclusionsHigher NF-κB activity, evidenced by elevated transcript levels for NF-κB family members, activation receptors, and kinases, may contribute to increased markers of cortical immune activation in schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.