Abstract

<p>The Nahr Menashe Unit (NMU), which forms the uppermost part of the Messinian succession,  is one of the most cryptic and elusive sedimentary units present in the Levant basin (Eastern Mediterranean). We use a high-resolution 3D seismic dataset from offshore Lebanon to propose a new interpretation for its formation and evolution. The NMU varies laterally across the basin both in thickness and internal seismic characteristics. The variably coherent cyclic seismic packages affected by fracturing, faulting suggests that the NMU represent a reworked, layered evaporite succession interbedded with siliciclastics derived from both the Lebanon Highlands and the Latakia Ridge. Widespread semi-circular depressions, random linear imprints, passive surface collapsing and residual mound features within the NMU suggest that post depositional diagenetic and/or strong dissolution process often affected its evaporite-rich subunits. The well-known extended valley and tributary channel systems characterising the uppermost NMU shows mainly erosional rather than depositional features. Erosion started after deposition of NMU as a consequence of the maximum base level fall during the last phase of the Messinian Salinity Crisis (MSC). The channel and valley system were subsequently infilled by layered sediments here interpreted to represent post-MSC deep water marine reflooding. In conclusion, our analyses suggest the NMU can be interpreted as a mixed evaporite-siliciclastic system deposited in a shallow marine or marginal environment, which subsequently experienced fluvial erosion and later burial by transgressive/high-stand sediments.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call