Abstract

There is evidence that one gonad has functional predominance. The present study analyzed the acute effects of unilateral ovariectomy (ULO) and blocking the cholinergic system, by injecting atropine sulfate (ATR), on estradiol (E2) serum concentrations during the estrous cycle. The results indicate that ULO effects on E2 concentrations are asymmetric, vary during the estrous cycle, and partially depend on the cholinergic innervation.Perforation of the left peritoneum resulted in lower E2 serum concentrations in the three stages of the estrous cycle. At proestrus, unilateral or bilateral perforation of the peritoneum resulted in lower E2 serum concentrations.ULO of the right ovary (left ovary in situ) resulted in significantly higher E2 concentrations than animals with ULO of the left ovary (right ovary in situ). ATR treatment to ULO rats on D1 resulted in a significant drop of E2 serum concentrations. ULO rats treated with ATR on D2 or P, resulted in an asymmetrical E2 secretion response; when the right ovary remained in situ an increase in E2 was observed, and a decrease when the left ovary remained in situ.The results obtained in the present study suggest that each ovary's ability to compensate the secretion of E2 from the missing ovary is different and varies during the estrous cycle. The results also suggest that the cholinergic system participates in regulating ovarian E2 secretion. Such participation varies according to the ovary remaining in situ and the stage of the estrous cycle of the animal.The results agree with previously stated hypothesis of a neural pathway arising from the peritoneum that participates in regulating E2 secretion, and also supports the idea of cross-talk between the ovaries, via a neural communication, that modulates E2 secretion.

Highlights

  • The results obtained in the present study suggest that each ovary's ability to compensate the secretion of E2 from the missing ovary is different and varies during the estrous cycle

  • The results agree with previously stated hypothesis of a neural pathway arising from the peritoneum that participates in regulating E2 secretion, and supports the idea of cross-talk between the ovaries, via a neural communication, that modulates E2 secretion

  • In previous studies we have shown that unilateral ovariectomy (ULO) modifies progesterone and/or testosterone serum concentrations, and that the effects of ULO depend on both, the stage of the estrous cycle when ULO was performed and the ovary remaining in situ [9,10,11]

Read more

Summary

Introduction

The results obtained in the present study suggest that each ovary's ability to compensate the secretion of E2 from the missing ovary is different and varies during the estrous cycle. The results suggest that the cholinergic system participates in regulating ovarian E2 secretion. Such participation varies according to the ovary remaining in situ and the stage of the estrous cycle of the animal. Acetylcholine produced by the follicle may be one of the neurotransmitters participating in modulating the effects of pituitary hormones on the follicle [1,2,3]. In previous studies we have shown that unilateral ovariectomy (ULO) modifies progesterone and/or testosterone serum concentrations, and that the effects of ULO depend on both, the stage of the estrous cycle when ULO was performed and the ovary (left or right) remaining in situ [9,10,11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.