Abstract

The subcellular distribution of ATP, ADP, creatine phosphate and creatine was studied in normoxic control, isoprenaline-stimulated and potassium-arrested guinea-pig hearts as well as during ischemia and after reperfusion. The mitochondrial creatine phosphate/creatine ratio was closely correlated to the oxidative activity of the hearts. This was interpreted as an indication of a close coupling of mitochondrial creatine kinase to oxidative phosphorylation. To further investigate the functional coupling of mitochondrial creatine kinase to oxidative phosphorylation, rat or guinea-pig heart mitochondria were isolated and the mass action ratio of creatine kinase determined at active or inhibited oxidative phosphorylation or in the presence of high phosphate, conditions which are known to change the functional state of the mitochondrial enzyme. At active oxidative phosphorylation the mass action ratio was one-third of the equilibrium value whereas at inhibited oxidative phosphorylation (N 2, oligomycin, car☐yatractyloside) or in the presence of high phosphate, the mass action ratio reached equilibrium values. These findings show that oxidative phosphorylation is essential for the regulation of the functional state of mitochondrial creatine kinase. The functional coupling of the mitochondrial creatine kinase and oxidative phosphorylation indicated from the correlation of mitochondrial creatine phosphate/creatine ratios with the oxidative activity of the heart in situ as well as from the deviation of the mass action ratio of the mitochondrial enzyme from creatine kinase equilibrium at active oxidative phosphorylation in isolated mitochondria is in accordance with the proposed operation of a creatine shuttle in heart tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.