Abstract

Humans, like other animals, pre-empt danger by moving to locations that maximize their success at escaping future threats. We test the idea that spatial margin of safety (MOS) decisions, a form of pre-emptive avoidance, results in participants placing themselves closer to safer locations when facing more unpredictable threats. Using multivariate pattern analysis on fMRI data collected while subjects engaged in MOS decisions with varying attack location predictability, we show that while the hippocampus encodes MOS decisions across all types of threat, a vmPFC anterior-posterior gradient tracked threat predictability. The posterior vmPFC encoded for more unpredictable threat and showed functional coupling with the amygdala and hippocampus. Conversely, the anterior vmPFC was more active for the more predictable attacks and showed coupling with the striatum. Our findings suggest that when pre-empting danger, the anterior vmPFC may provide a safety signal, possibly via predictable outcomes, while the posterior vmPFC drives prospective danger signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.