Abstract
The degradation of toluene and m-cresol in a biofilm trickle-bed reactor was experimentally and theoretically investigated. Degradation is the result of the cooperation between suspended and immobilized microorganisms in the trickling film and the biofilm. The role of the trickling film is that of a barrier for mass transfer to the biofilm or that of an additional reaction space. This is the result of physical availability of pollutants to the liquid phase as well as co-substrate degradation of inherent biomass. An instationary reactor balance model is presented. In addition to this the change in wetting behavior of carrier surface due to biofilm formation is discussed. A partial wetting of biofilm surface by rivulets of the trickling film is proposed. The model was verified by experimental data. The different reactor operation modes denoted as biofilm regime versus trickling film regime for the chosen pollutant system were expressed in terms of dimensionless reactions and transfer numbers. It is shown that the volumetric reaction rates for toluene in a trickling film regime reaches values twice as high as that of a biofilm regime due to the presence of the second substrate m-cresol. The limiting step in both cases is the mass transfer of oxygen to bacteria in the biofilm or trickling film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.