Abstract

AbstractConsider a classical Hamiltonian H on the cotangent bundle T*M of a closed orientable manifold M, and let L:TM → R be its Legendre‐dual Lagrangian. In a previous paper we constructed an isomorphism Φ from the Morse complex of the Lagrangian action functional that is associated to L to the Floer complex that is determined by H. In this paper we give an explicit construction of a homotopy inverse Ψ of Φ. Contrary to other previously defined maps going in the same direction, Ψ is an isomorphism at the chain level and preserves the action filtration. Its definition is based on counting Floer trajectories on the negative half‐cylinder that on the boundary satisfy half of the Hamilton equations. Albeit not of Lagrangian type, such a boundary condition defines Fredholm operators with good compactness properties. We also present a heuristic argument which, independently of any Fredholm and compactness analysis, explains why the spaces of maps that are used in the definition of Φ and Ψ are the natural ones. The Legendre transform plays a crucial role both in our rigorous and in our heuristic arguments. We treat with some detail the delicate issue of orientations and show that the homology of the Floer complex is isomorphic to the singular homology of the loop space of M with a system of local coefficients, which is defined by the pullback of the second Stiefel‐Whitney class of TM on 2‐tori in M.© 2015 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.