Abstract

Primary hypertension is one of the leading risk factors for cardiovascular disease. Although the pathogenesis is not completely understood, an imbalance of sodium and chloride homeostasis seems to be relevant both in the induction and in the maintenance of salt-sensitive hypertension. Besides individual renal phenotypes, salt intake is one of the most important environmental determinants of this condition. The Milan hypertensive strain (MHS) of rats is an interesting model to investigate the molecular mechanisms underling the development of salt-sensitive hypertension. In young MHS rats, hypertension is anticipated by a phase of increased salt reabsorption localized along the medullary thick ascending limb associated with the up-regulation of the apical sodium-potassium-chloride cotransporter (NKCC2). Later, the frank hypertensive status of adult MHS rats is accompanied by the activation of the luminal and basal lateral transporters of sodium chloride (NaCl) in the distal convoluted tubule (DCT). Several lines of evidence have proven the key role of DCT in the maintenance of hypertension in MHS rats; more importantly, hypertensive patients carrying a mutation of α-adducin (resembling the MHS model) have a high sensitivity to thiazides, suggesting that the Na(+)-Cl(-) cotransporter also plays a pivotal role in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.