Abstract

Atrial fibrillation is the most common cardiac arrhythmia. Structural cardiac defects such as fibrosis and gap junction remodeling lead to a reduced cellular electrical coupling and are known to promote atrial fibrillation. It has been observed that the expression of the hyperpolarization-activated current If is increased under pathological conditions. Recent experimental data indicate a possible contribution of If to arrhythmogenesis. In this paper, the role of If in action potential propagation in normal and in pathological tissue is investigated by means of computer simulations. The effect of diffuse fibrosis and gap junction remodeling is simulated by reducing cellular coupling nonuniformly. As expected, the conduction velocity decreases when cellular coupling is reduced. In the presence of If the conduction velocity increases both in normal and in pathological tissue. In our simulations, ectopic activity is present in regions with high expression of If and is facilitated by cellular uncoupling. We conclude that an increased If may facilitate propagation of the action potential. Hence, If may prevent conduction slowing and block. Overexpression of If may lead to ectopic activity, especially when cellular coupling is reduced under pathological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.