Abstract

The vacuum-free quantum dots solar cell (VFQDSC) was fabricated without using any vacuum process. The spherical iron pyrite (FeS2) nanoparticles (SNPs) and ZnO nanoparticles (NPs) were synthesized and characterized. In the device structure, FeS2 SNPs were used as an acceptor material (n-type), and the low band gap polymer of poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b′]-dithiophene-2,6-diyl-alt-ethylhexyl-3-fluorothieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PBT7) was used as a donor material (p-type). In this study, we first applied the graphene oxide (GO) as the hole transport buffer layer (HTBL) and zinc oxide (ZnO) as an electron transport buffer layer (ETBL), which were considered to improve the charge transportation efficiency of the device’s system. The device with the structure of the Glass/ITO/HTBL/FeS2 SNPs, PBT7/ ETBL/E-GaIn were fabricated with a maximum power conversion efficiency (PCE) of 3.6%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.