Abstract
Constitutive models that complete the set of equations describing the flow of polymer melts should respect objective thermodynamics and stability conditions ensuring their validity in the whole range of possible deformation flow. However, in practice, a very good description of flow situations can be achieved with the models not complying with the physical assumptions in all respects. Analogously to the term characterizing yield stress in empirical viscoplastic models, the term represented by the Gordon–Schowalter (GS) derivative in the differential constitutive models contributes to better fitting the experimental data, especially shear thinning. Efficiency of the recently presented modified eXtended Pom-Pom model (just one non-linear parameter per mode) implementing the GS derivative term (one additional non-affine motion parameter per mode) is improved (documented on LDPE, HDPE, and polyvinyl butyral (PVB) materials), and a comparison with the exponential Phan-Tien–Tanner (PTT) and PTT-XPP models (a priori containing the GS derivative term) are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.