Abstract

BackgroundPlant extracts are sources of valuable compounds with biological activity, especially for the anti-proliferative activity against pathogens or tumor cells. Myricetin is a flavonoid found in several plants that has been described as an inhibitor of Human immunodeficiency virus type 1 (HIV-1) through its action against the HIV reverse transcriptase, but myricetin derivatives have not been fully studied. The aim of this study was to evaluate the anti-HIV-1 activity of glycosylated metabolites obtained from Marcetia taxifolia and derived from myricetin: myricetin rhamnoside and myricetin 3-(6-rhamnosylgalactoside).MethodsCompounds were obtained from organic extracts by maceration of aerial parts of M. taxifolia. All biological assays were performed in the MT4 cell line. Antiviral activity was measured as inhibition of p24 and reverse transcriptase with a fluorescent assay.ResultsBoth flavonoids have antiviral activity in vitro, with an EC50 of 120 µM for myricetin 3-rhamnoside (MR) and 45 µM for myricetin 3-(6-rhamnosylgalactoside) (MRG), both significantly lower than the EC50 of myricetin (230 µM). Although both compounds inhibited the reverse transcriptase activity, with an IC50 of 10.6 µM for MR and 13.8 µM for MRG, myricetin was the most potent, with an IC50 of 7.6 µM, and an inhibition greater than 80%. Molecular docking approach showed correlation between the free energy of binding with the assays of enzyme inhibition.ConclusionsThe results suggest that glycosylated moiety might enhance the anti-HIV-1 activity of myricetin, probably by favoring the internalization of the flavonoid into the cell. The inhibition of the HIV-1 reverse transcriptase is likely responsible for the antiviral activity.

Highlights

  • Plant extracts are sources of valuable compounds with biological activity, especially for the antiproliferative activity against pathogens or tumor cells

  • The half inhibitory concentration (IC50) obtained for myricetin was 7.6 μM, while for myricetin 3-rhamnoside it was 10.6 μM, and for myricetin 3-(6-rhamnosylgalactoside) 13.8 μM

  • The results showed that the antiviral potency of myricetin derived compounds was related to the number of glycosyl residues on the molecule supporting the notion that the addition of glycosides to myricetin could modulate the anti-human immunodeficiency virus (HIV)-1 activity of these compounds

Read more

Summary

Introduction

Plant extracts are sources of valuable compounds with biological activity, especially for the antiproliferative activity against pathogens or tumor cells. Myricetin is a flavonoid found in several plants that has been described as an inhibitor of Human immunodeficiency virus type 1 (HIV-1) through its action against the HIV reverse transcriptase, but myricetin derivatives have not been fully studied. Plants are a rich source of new bioactive compounds [4]. Flavonoids, a large group of polyphenolic compound, are known for their bioactive properties and are widely distributed in the vegetal kingdom [5]. The range of their biological properties include anti-allergic, antibacterial, antidiabetic, anti-inflammatory and antiviral activities [6, 7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call