Abstract

BackgroundAcute lung injury (ALI) is an acute inflammatory respiratory disease. The interaction between growth arrest-specific 6 (Gas6) and tyrosine kinases of the Tyro3, Axl, Mer (TAM) family plays an important role in a variety of physiological and pathological processes, including inflammation. In this study, we mainly clarified the mechanism of the Gas6/TAM signal pathway in lipopolysaccharide (LPS)-induced pulmonary epithelial cells (BEAS-2B cells) injury. MethodsWe cultured BEAS-2B cells in vitro and established a LPS-induced BEAS-2B cells injury model. Then, the siRNA sequence (siGas6–2) was transfected into cells. The expression of Gas6/TAM was measured based on quantitative reverse transcription polymerase chain reaction (qRT-RCR) and western blot (WB). Cell proliferation and apoptosis were measured by cell counting Kit-8 (CCK-8) and flow cytometry. The expression of pro-inflammatory factors was measured by qRT-RCR and WB. ResultsOur study showed that when the 40 μg/mL LPS-induced BEAS-2B cells injury model was established, cell viability was significantly reduced, but the Gas6/TAM signal pathway was activated. When transfection with siGas6–2, low expression of Gas6 directly reduced the expression of downstream TAM receptors. Furthermore, the inhibition of the Gas6/TAM signal pathway significantly reduced the occurrence of cell apoptosis and the expression of inflammatory factors, and promoted cell proliferation. ConclusionOur research indicated that Gas6/TAM played an important role in cell proliferation, apoptosis, and inflammatory response in the LPS-induced BEAS-2B cells injury, and Gas6/TAM may be a new target in the treatment of ALI in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call