Abstract

The energy of pair interactions between metal nanoparticles of different sizes is shown to be able to increase upon coagulation due to the additional electrostatic effect resulting from mutual heteropolar charging of the particles. The tunnel electron transfer occurring upon the collisions between particles of different sizes may be the reason for the charging. The transfer is caused by the dependence of the electron work function on the particle size. The electron transfer through the interparticle gap equalizes the Fermi levels in particles of different sizes and is associated with this dependence. Using the example of bimodal silver nanocolloids, it is shown that mutual heteropolar charging of particles with different sizes may accelerate the coagulation of polydisperse colloidal systems by an order of magnitude or more as compared with monodisperse systems, in which this effect is absent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.