Abstract

ABSTRACT The concept of eigenvalue separation (ES) was introduced in the past for the characterisation of the space-time kinetics of reactor transients, and the stability properties of large loosely coupled cores. However, most of the investigations reported so far concern the determination of the ES itself either from static calculations, or from measurements of the flux tilt or neutron noise cross-correlations. Conclusions on system behaviour were only drawn from the properties of the static eigenfunctions, comparing non-perturbed and perturbed systems, without explicitly solving the time- or frequency-dependent problem. In this paper, we explore the role of the ES on the neutronic response of a critical core to small stochastic perturbations (neutron noise); in particular, the spatial and frequency characteristics of the arising neutron noise as a function of the ES, as well as the spatial structure of the perturbation. It is shown that for systems with small ES and non-uniform perturbations, point kinetics will not dominate even for very low frequencies. The results lend some further insight into the origin and properties of the various types of boiling water reactor instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.