Abstract
A series of computer simulations of the Earth's dynamo illustrates how the thermal structure of the lowermost mantle might affect convection and magnetic-field generation in the fluid core. Eight different patterns of heat flux from the core to the mantle are imposed over the core–mantle boundary. Spontaneous magnetic dipole reversals and excursions occur in seven of these cases, although sometimes the field only reverses in the outer part of the core, and then quickly reverses back. The results suggest correlations among the frequency of reversals, the duration over which the reversals occur, the magnetic-field intensity and the secular variation. The case with uniform heat flux at the core–mantle boundary appears most ‘Earth-like’. This result suggests that variations in heat flux at the core–mantle boundary of the Earth are smaller than previously thought, possibly because seismic velocity anomalies in the lowermost mantle might have more of a compositional rather than thermal origin, or because of enhanced heat flux in the mantle's zones of ultra-low seismic velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.