Abstract

In this work, we uncover hidden geometric aspect of low-order compatible numerical schemes. First, we rewrite standard mimetic reconstruction operators defined by Stokes theorem using geometric elements of the barycentric dual grid, providing the equivalence between mimetic numerical schemes and discrete geometric approaches. Second, we introduce a novel global property of the reconstruction operators, called P0-consistency, which extends the standard consistency requirement of the mimetic framework. This concept characterizes the whole class of reconstruction operators that can be used to construct a global mass matrix in such a way that a global patch test is passed. Given the geometric description of the scheme, we can set up a correspondence between entries of reconstruction operators and geometric elements of a secondary grid, which is built by duality from the primary grid used in the scheme formulation. Finally, we show the that the geometric interpretation is necessary for the correct evaluation of certain physical variables in the post-processing stage. A discussion on how the geometric viewpoint allows to optimize reconstruction operators completes the exposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.