Abstract

F(1)-ATPase is a rotary motor protein, and ATP hydrolysis generates torque at the interface between the gamma subunit, a rotor shaft, and the alpha(3)beta(3) substructure, a stator ring. The region of conserved acidic "DELSEED" motif of the beta subunit has a contact with gamma subunit and has been assumed to be involved in torque generation. Using the thermophilic alpha(3)beta(3)gamma complex in which the corresponding sequence is DELSDED, we replaced each residue and all five acidic residues in this sequence with alanine. In addition, each of two conserved residues at the counterpart contact position of gamma subunit was also replaced. Surprisingly, all of these mutants rotated with as much torque as the wild-type. We conclude that side chains of the DELSEED motif of the beta subunit do not have a direct role in torque generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.