Abstract

Three-dimensional numerical model simulations of a mesoscale convective system are performed to evaluate the sensitivity of the simulations to differences in the convective trigger function. The Penn State/NCAR mesoscale model with the Kain-Fritsch convective parameterization scheme is used as the modeling system for the study. All simulations are performed on the June 10–11, 1985 squall line from the OK PRE-STORM field experiment. Individual simulations differ only in their specification of the trigger function within the Kain-Fritsch scheme. Comparison of results from 12 hour simulations indicates that the position, timing, and intensity of convective activity and mesoscale features vary substantially as a function of the trigger function formulation. The results suggest that the convective trigger function is an integral part of the overall convective parameterization problem, and that great care must be exercised is designing realistic trigger function formulations, especially as model resolutions approach the scale of individual convective clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.