Abstract

Phosphorus L-edge and oxygen K-edge X-ray PhotoEmission Electron Microscopy (XPEEM) have been used to characterize the chemical nature of the cation present in tribochemical films via comparison with model Fe2+ and Zn2+ compounds. The results are contrasted to the P L-edge, P K-edge and S K-edge XANES data. The findings suggest that antiwear pads containing long chain zinc polyphosphate glass are formed at the points of asperity contact, and a thin, short chain zinc polyphosphate film is formed where no asperity contact is made. SEM/EDX measurements helped to elucidate the distribution of the elements, and strong spatial correlations were observed between P, O, Zn and S in the pads, indicating that they are composed mostly of zinc polyphosphates, especially near the surface. The zinc polyphosphate antiwear pads are characterized by a much lower modulus than that observed on the thin film regions, the latter being characteristic of the substrate steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.