Abstract

Hepatocyte growth factor receptor (HGFR), the product of the MET gene, plays an important role in normal cellular function and oncogenesis. In cancer, HGFR has been implicated in cellular proliferation, cell survival, invasion, cell motility, metastasis and angiogenesis. Activation of HGFR can occur through binding to its ligand, hepatocyte growth factor (HGF), overexpression/amplification, mutation, and/or decreased degradation. Amplification of HGFR can occur de novo or in resistance to therapy. Mutations of HGFR have been described in the tyrosine kinase domain, juxtamembrane domain, or semaphorin domain in a number of tumors. These mutations appear to have gain of function, and also reflect differential sensitivity to therapeutic inhibition. There have been various drugs developed to target HGFR, including antibodies to HGFR/HGF, small-molecule inhibitors against the tyrosine kinase domain of HGFR and downstream targets. Different HGFR inhibitors are currently in clinical trials in lung cancer and a number of solid tumors. Several phase I trials have already been completed, and two specific trials have been reported combining HGFR with epidermal growth factor receptor (EGFR) inhibition in non-small cell lung cancer. In particular, trials involving MetMAb and ARQ197 (tivantinib) have gained interest. Ultimately, as individualized therapies become a reality for cancers, HGFR will be an important molecular target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.