Abstract

1. The hydrolysis of gelatin at a constant hydrogen ion concentration follows the course of a monomolecular reaction for about one-third of the reaction. 2. If the hydrogen ion concentration is not kept constant the amount of hydrolysis in certain ranges of acidity is proportional to the square root of the time (Schütz's rule). 3. The velocity of hydrolysis in strongly acid solution (pH less than 2.0) is directly proportional to the hydrogen ion concentration as determined by the hydrogen electrode i.e., the "activity;" it is not proportional to the hydrogen ion concentration as determined by the conductivity ratio. 4. The addition of neutral salts increases the velocity of hydrolysis and the hydrogen ion concentration (as determined by the hydrogen electrode) to approximately the same extent. 5. The velocity in strongly alkaline solutions (pH greater than 10) is directly proportional to the hydroxyl ion concentration. 6. Between pH 2.0 and pH 10.0 the rate of hydrolysis is approximately constant and very much greater than would be calculated from the hydrogen and hydroxyl ion concentration. This may be roughly accounted for by the assumption that the uncombined gelatin hydrolyzes much more rapidly than the gelatin salt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call