Abstract

A series of standardized tasks, isometric trunk flexion and extension and maximal Valsalva manoeuvres, were used to evaluate the role of the abdominal musculature in developing an increased intra-abdominal pressure (IAP). Seven male subjects were measured for IAP, myoelectric activity of rectus abdominis (RA), obliquus externus and internus (OE and OI respectively), erector spinae (ES) and isometric trunk torque. IAPs in all experimental conditions were markedly greater than those that occurred while relaxed. In isometric trunk flexion, IAPs were increased with accompanying high levels of activity from the abdominal muscles. In contrast, little activity from the abdominal muscles occurred during isometric trunk extension, although levels of IAP were similar to those found in the isometric flexion condition. With maximal voluntary pressurization (Valsalva manoeuvre) slightly higher levels of IAP than those found in torque conditions were recorded, this pressure being produced with abdominal activities (OE and OI) less than one fourth their recorded maximum. When isometric torque tasks were added to the Valsalva manoeuvre, patterns of muscle activity (RA, OE, OI and ES) were significantly altered. For Valsalva with isometric trunk extension, activity from OE and OI was reduced while IAPs remained fairly constant. These findings indicate that in tasks where an IAP extension moment is warranted, abdominal pressure can be increased without the development of a large counter-moment produced by the dual action of the trunk flexors. Activation of other muscles such as the diaphragm and transversus abdominis is suggested as helping provide control over the level of IAP during controlled trunk tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call