Abstract

Time-dependent density functional theory (TDDFT) calculations on the photoabsorption process of the 11-cis retinal protonated Schiff base (PSB) chromophore show that the Franck-Condon relaxation of the first excited state of the chromophore involves a torsional twist motion of the beta-ionone ring relative to the conjugated retinyl chain. For the ground state, the beta-ionone ring and the retinyl chain of the free retinal PSB chromophore form a -40 degrees dihedral angle as compared to -94 degrees for the first excited state. The double bonds of the retinal are shorter for the fully optimized structure of the excited state than for the ground state suggesting a higher cis-trans isomerization barrier for the excited state than for the ground state. According to the present TDDFT calculations, the excitation of the retinal PSB chromophore does not primarily lead to a reaction along the cis-trans torsional coordinate at the C11-C12 bond. The activation of the isomerization center seems to occur at a later stage of the photo reaction. The results obtained at the TDDFT level are supported by second-order Møller-Plesset (MP2) and approximate singles and doubles-coupled cluster (CC2) calculations on retinal chromophore models; the MP2 and CC2 calculations yield for them qualitatively the same ground state and excited-state structures as obtained in the density functional theory and TDDFT calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.