Abstract
Whether investor sentiment affects stock prices is an issue of long-standing interest for economists. We conduct a comprehensive study of the predictability of investor sentiment, which is measured directly by extracting expectations from online user-generated content (UGC) on the stock message board of Eastmoney.com in the Chinese stock market. We consider the influential factors in prediction, including the selections of different text classification algorithms, price forecasting models, time horizons, and information update schemes. Using comparisons of the long short-term memory (LSTM) model, logistic regression, support vector machine, and Naïve Bayes model, the results show that daily investor sentiment contains predictive information only for open prices, while the hourly sentiment has two hours of leading predictability for closing prices. Investors do update their expectations during trading hours. Moreover, our results reveal that advanced models, such as LSTM, can provide more predictive power with investor sentiment only if the inputs of a model contain predictive information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.