Abstract
Ocean acidification (OA) is occurring across a backdrop of concurrent environmental changes that may in turn influence species' responses to OA. Temperature affects many fundamental biological processes and governs key reactions in the seawater carbonate system. It therefore has the potential to offset or exacerbate the effects of OA. While initial studies have examined the combined impacts of warming and OA for a narrow range of climate change scenarios, our mechanistic understanding of the interactive effects of temperature and OA remains limited. Here, we use the blue mussel, Mytilus galloprovincialis, as a model species to test how OA affects the growth of a calcifying invertebrate across a wide range of temperatures encompassing their thermal optimum. Mussels were exposed in the laboratory to a factorial combination of low and high pCO2 (400 and 1200 µatm CO2) and temperatures (12, 14, 16, 18, 20, and 24°C) for one month. Results indicate that the effects of OA on shell growth are highly dependent on temperature. Although high CO2 significantly reduced mussel growth at 14°C, this effect gradually lessened with successive warming to 20°C, illustrating how moderate warming can mediate the effects of OA through temperature's effects on both physiology and seawater geochemistry. Furthermore, the mussels grew thicker shells in warmer conditions independent of CO2 treatment. Together, these results highlight the importance of considering the physiological and geochemical interactions between temperature and carbonate chemistry when interpreting species' vulnerability to OA.
Highlights
As carbon dioxide (CO2) emissions continue to rise, many organisms will experience complex changes in their environment, from shifts in temperature to altered geochemistry [1]
Our results indicate that the biological effects of Ocean acidification (OA) on the growth of bay mussels are highly dependent on temperature
The reduction in growth associated with elevated CO2 at 14uC, lessened with each subsequent 2uC step warming up to 20uC, suggesting that warmer temperatures can offset some of the potentially detrimental effects of OA on mussel growth
Summary
As carbon dioxide (CO2) emissions continue to rise, many organisms will experience complex changes in their environment, from shifts in temperature to altered geochemistry [1]. The combined ecological effects of multiple environmental changes can be interactive, where the presence of one environmental driver influences species’ responses to a second driver [2,3]. There is considerable concern regarding potential synergistic effects among multiple environmental changes, where the combined effect on a species of two or more drivers is worse than would be expected from a strictly additive influence of the separate factors [4]. The potential for interactive effects prevents robust predictions of ecological effects of global change from the results of experiments incorporating single drivers. Understanding how organisms and ecosystems respond to key environmental drivers across simultaneous changes in other drivers remains a priority for science, management, and conservation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.