Abstract
In order to maintain the homeostasis of the hematopoietic system, hematopoietic stem cells (HSCs) need to be maintained while slowly dividing over their lifetime. However, repeated cell divisions lead to the gradual accumulation of DNA damage and ultimately impair HSC function. Since telomeres are particularly fragile when subjected to replication stress, cells have several defense machinery to protect telomeres. Moreover, HSCs must protect their genome against possible DNA damage, while maintaining telomere length. A group of proteins called the shelterin complex are deeply involved in this two-way role, and it is highly resistant to the replication stress to which HSCs are subjected. Most shelterin-deficient experimental models suffer acute cytotoxicity and severe phenotypes, as each shelterin component is essential for telomere protection. The Tin2 point mutant mice show a dyskeratosis congenita (DC) like phenotype, and the Tpp1 deletion impairs the hematopoietic system. POT1/Pot1a is highly expressed in HSCs and contributes to the maintenance of the HSC pool during in vitro culture. Here, we discuss the role of shelterin molecules in HSC regulation and review current understanding of how these are regulated in the maintenance of the HSC pool and the development of hematological disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.