Abstract

Acyl carrier protein (ACP) plays an essential role in fatty acid and polyketide biosynthesis, and most of the fatty acid synthases (FASs) and polyketide synthases (PKSs) known to date are characterized with a single ACP for each cycle of chain elongation. Polyunsaturated fatty acid (PUFA) biosynthesis is catalyzed by the PUFA synthase, and all PUFA synthases known to date contain tandem ACPs (ranging from 5 to 9). Using the Pfa PUFA synthase from Shewanella japonica as a model system, we report here that these tandem ACPs are functionally equivalent regardless of their physical location within the PUFA synthase subunit, but the total number of ACPs controls the overall PUFA titer. These findings set the stage to interrogate other domains and subunits of PUFA synthase for their roles in controlling the final PUFA products and could potentially be exploited to improve PUFA production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call