Abstract

Multiple myeloma (MM) represents a hematological neoplasia with an uncontrolled proliferation of malignant plasma cells and complex cytogenetic abnormalities. t(11;14) has emerged as a crucial genetic aberration and is one of the most common primary translocations in MM. Patients harboring t(11;14) represent a distinctive subgroup with a clinical profile that differs from t(11;14)-negative MM risk categories. One of the key features linked with t(11;14) is the BCL2 dependency, indicating vulnerability to BCL2 inhibition. BCL2 inhibitors, such as venetoclax, demonstrated impressive efficacy alone or in combination with other anti-myeloma drugs in patients with RRMM accompanied by t(11;14) and BCL2 overexpression. Therefore, t(11;14) plays a key role in both risk stratification and informed decision making towards a tailored therapy. In this review, we highlight the biology of t(11;14) in MM cells, summarize the current evolving role of t(11;14) in the era of novel agents and novel targeted therapies, illuminate current efficacy and safety data of BCL2-based treatment options and explore the future prospects of individualized precision medicine for this special subgroup of patients with MM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call